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UnConjUgated bilirUbin fUnCtions 
physiologiCally to inhibit nadph oxidase 
Complexes
Gilbert syndrome (GS) is a common genetic 
variant in which plasma unconjugated bili-
rubin levels are elevated throughout life, 
in the absence of hepatic pathology.1 This 
typically reflects decreased hepatic capacity 
for conjugation of bilirubin coupled with 
an upregulation of bilirubin generation. 
Typically, subjects with GS are homozygous 
for promoter mutations compromising tran-
scriptional efficiency in the gene coding 
for uridine-diphosphoglucuronate glucu-
ronosyltransferase 1A1 (UGT1A1), which 
links bilirubin to glucuronic acid; as a 
result, hepatic expression of this enzyme 
is decreased, although the enzyme itself 
is functionally normal. However, plasma 
bilirubin levels in many people homozy-
gous for such mutations fail to exceed the 
level (defined as either 17.1 or 20 µmol/L) 
considered diagnostic for GS. Hence, 
subjects with GS also are characterised by 
an increased rate of bilirubin generation, 
ultimately traceable to increased heme 
synthesis. In some cases, this may reflect 
upregulated heme oxygenase activity, which 
would reflexly boost heme production.1 2

Epidemiological studies have found that 
GS confers potent and versatile health 
protection.2–5 Notably, an analysis of the 
Health Improvement Network primary care 
database in the UK found that, after adjust-
ment for pertinent covariants, a diagnosis 
of GS was associated with a relative risk for 
all-cause mortality of 0.5 (95% CI 0.4 to 0.7; 
p<0.001).6

This remarkable health benefit appears 
likely to stem largely from the fact that physi-
ological intracellular levels of unconjugated 
bilirubin inhibit certain common isoforms 
of NADPH oxidase.7–11 These membrane-
bound superoxide-generating complexes 

are a major source of the oxidants that 
drive or exacerbate a high proportion of 
health disorders. Bilirubin’s inhibitory 
impact on NADPH oxidase activity presum-
ably explains much of the profound anti-
oxidant activity of heme oxygenase, which 
cleaves heme to yield biliverdin, carbon 
monoxide and free iron; biliverdin is 
then rapidly reduced by the ubiquitously 
expressed enzyme biliverdin reductase to 
yield bilirubin. Expression of inducible 
form of heme oxygenase, HO-1, can be 
boosted by oxidative stress—often derived 
from NADPH oxidase activity; the resultant 
production of bilirubin feeds back to quell 
this oxidative stress.10 Although bilirubin 
can also act as a direct oxidant scavenger, its 
physiological intracellular level—in the low 
nanomolar range—is too low to compete in 
this regard with other intracellular scaven-
gers (eg, glutathione, ascorbate) present in 
millimolar concentrations.3

While there currently is a common 
perception among medical scientists, 
rooted in the disappointing results of clin-
ical trials with nutritional scavenging antiox-
idants such as ascorbate, alpha-tocopherol 
and beta-carotene, that antioxidants have 
limited potential for conferring health 
protection, this perception fails to grasp 
the crucial difference between scavenging 
antioxidants and ‘source antioxidants’, of 
which bilirubin is a key example.12 Source 
antioxidants, by definition, prevent oxidant 
production by suppressing superoxide 
generation at its source; they therefore 
oppose the often proinflammatory effects 
of hydrogen peroxide on cellular signalling, 
and prevent conversion of (often protec-
tive) nitric oxide to the potent oxidant 
peroxynitrite13 14—effects which scavenging 
antioxidants cannot achieve. Statins and 
angiotensin II antagonist drugs likewise can 
function as source antioxidants in vascular 
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tissues by inhibiting the activation of certain NADPH 
oxidase complexes.12 15 16

mimiCking gs as a CliniCal antioxidant strategy
Although oral administration of bilirubin as a clin-
ical strategy is not feasible, owing to its extremely low 
water solubility, plasma and tissue bilirubin levels can 
be increased by drugs or nutraceuticals that inhibit 
UGT1A1; this approach has been dubbed ‘iatrogenic 
Gilbert syndrome’.3 17 Alternatively, bilirubin’s much 
more soluble precursor biliverdin could be administered 
orally.18 While biliverdin is a complex molecular quite 
expensive to synthesise, and no rich natural sources exist, 
the biliverdin metabolite phycocyanobilin (PhyCB) func-
tions as a light-harvesting chromophore in cyanobacteria 
and certain blue-green algae, such as the food spirulina; 
PhyCB can constitute 0.6% or more of the dry weight of 
spirulina.19 PhyCB is readily converted by biliverdin reduc-
tase to the bilirubin analogue phycocyanorubin, which 
appears to share bilirubin’s ability to inhibit NADPH 
oxidase complexes.19–21 Arguably, this may largely explain 
the versatile antioxidant and anti-inflammatory proper-
ties of oral spirulina (or of phycocyanin, the spirulina 
protein to which PhyCB is covalently attached) in rodent 
studies.19 22 23 Hence, spirulina—or, preferably, spirulina 
extracts enriched in PhyCB, since spirulina itself has an 
unappetising flavour and odour—may have considerable 
potential as source antioxidants.

gs is assoCiated with lower gain in fat mass dUring 
later life
A recent cross-sectional epidemiological study evaluating 
subjects with GS has discovered that GS is associated with 
a reduced tendency to gain body fat in later life.24 The 
study enrolled 124 subjects with GS (average plasma 
unconjugated bilirubin 30.7 µM) and 124 age-matched 
and gender-matched controls (8.7 µM). Unlike previous 
studies evaluating Body Mass Index (BMI) in subjects 
with GS—which found modestly lower BMI as compared 
with age-matched controls25—this study was designed 
to analyse young subjects (under 35) and older subjects 
(over 35) separately. Whereas, as compared with age/
gender-matched controls, the subjects with GS in the 
younger group were found to have a modestly but signifi-
cantly lower BMI (22.5 vs 23.5), the disparity for the older 
group was dramatic—23.8 vs 27.2 (p<0.001). Moreover, 
the average body fat content in the older GS group was 
21.8%, as compared with 29.3% in their controls (p<0.01). 
A reasonable deduction is that chronically elevated free 
unconjugated bilirubin—and perhaps an upregulation 
in intracellular bilirubin generation—somehow opposes 
age-related gain in body fat.

Of related interest is a study showing that intraperi-
toneal administration of bilirubin—administered daily 
for 14 days—inhibits weight gain in rats fed a diet high 
in fats and sugar.26 Bilirubin injections were also found 
to prevent deterioration of glucose tolerance. A trend 

towards decreased calorie consumption in the biliru-
bin-treated rats just failed to achieve statistical signifi-
cance (p=0.06).

A credible case can be made that the favourable impact 
of elevated bilirubin on risk for undesirable weight 
gain reflects preservation of hypothalamic leptin sensi-
tivity.27 Rodents rendered obese with high-fat, high-sugar 
‘Western’ diets develop leptin resistance in the arcuate 
nucleus of the hypothalamus; for this reason, as the 
rodents become obese, the evolving hyperleptinemia fails 
to oppose the hyperphagia induced by such diets.28–30 
This leptin resistance is mediated, at least in part, by 
activation and proliferation of microglia in the arcuate 
nucleus, which can produce cytokines (notably tumour 
necrosis factor-α31 that counteract leptin signalling).32–34 
Activation of NADPH oxidase is a key mediator of pro-in-
flammatory microglial activation35–37; hence, elevated 
bilirubin might be expected to support effective leptin 
function in the arcuate nucleus, thereby aiding appetite 
control.27

bilirUbin aCts on adipoCytes to CoUnter metaboliC 
syndrome
Oxidative stress in adipocytes, stemming largely from 
NADPH oxidase activity, appears to play a key role in 
the induction of insulin resistance and the skewing of 
adipokine and cytokine production in hypertrophied 
adipocytes.38–43 Hence, bilirubin and heme oxygenase 
activity could be expected to aid maintenance of adipo-
cyte insulin sensitivity. Indeed, plasma levels of uncon-
jugated bilirubin have been found to correlate inversely 
with risk for metabolic syndrome and diabetes in prospec-
tive epidemiological studies, as confirmed in a recent 
meta-analysis.44

In both cross-sectional and prospective studies, higher 
plasma bilirubin levels are associated with better insulin 
sensitivity and decreased risk for metabolic syndrome 
and type 2 diabetes—independent of BMI.45 46 Hence, 
bilirubin may function both to prevent adipocyte hyper-
trophy—via its hypothalamic effects—and to improve the 
function of adipocytes that have already hypertrophied.

A direct protective effect of bilirubin on adipocyte 
function may be largely responsible for this phenom-
enon. Hypertrophied insulin-resistant adipocytes are 
characterised by increased oxidative stress, derived in 
large part from NADPH oxidase complexes (Nox2 and 
Nox4 dependent); the activated macrophages in hyper-
trophic visceral adipose tissue (expressing Nox2) can also 
contribute to this oxidant load.39–41 47 There is consider-
able evidence that this oxidant stress plays a mediated 
role in the insulin resistance, upregulation of proinflam-
matory cytokines and diminished adiponectin secretion 
characteristic of hypertrophied visceral adipocytes.

Adverse effects of oxidants on adipocyte function may 
be mediated in large part by increased activation of the 
ASK1-MKK4-JNK signalling pathway.48 Activation of 
JNK in hypertrophied adipocytes plays a central role in 
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metabolic syndrome.49 50 Adipocyte-specific expression 
of dominant-negative JNK prevents systemic insulin resis-
tance, glucose intolerance and hepatic steatosis in mice 
fed a high-fat diet.50 Moreover, this prevents the decline 
in adiponectin production, the increase in pro-inflam-
matory cytokines and the infiltration of activated macro-
phages seen in the adipose tissue of mice fed such a diet. 
Activated JNK impairs insulin signalling by phosphory-
lation of Ser307 in insulin receptor substrate-1 (IRS-1), 
preventing it from interacting with the activated insulin 
receptor and accelerating its proteasomal degradation.51 
JNK may promote adipocyte expression of pro-inflam-
matory cytokines such as TNFα and MCP-1, at least in 
part, by phosphorylating c-Jun and thereby boosting AP-1 
transcriptional activity.52–54 Phosphorylation of PPARγ 
by JNK diminishes its transcriptional activity, and this 
might account for JNK’s ability to suppress expression 
of adiponectin, a hormone crucial for the maintenance 
of hepatic insulin sensitivity, control of gluconeogenesis 
and prevention of hepatic steatosis.55–59 And JNK medi-
ates the suppressive effect of TNFα on β-klotho expres-
sion in adipocytes, an effect responsible for the decreased 
responsiveness of adipocytes to fibroblast growth factor-
21, a key stimulant to adiponectin expression.60

ASK1 is a prominent upstream activator of JNK (via 
MKK4) in adipocytes; its expression is upregulated in the 
visceral adipocytes of obese patients.61 The kinase activity 
of ASK1 is inhibited by its binding with the redox-modu-
lated protein thioredoxin.62 63 Oxidants such as hydrogen 
peroxide alter the structure of this protein by inducing 
formation of an intramolecular disulfide bridge; this 
structural alteration prevents the binding of thiore-
doxin to ASK1.64 65 The reduced structure of thioredoxin 
is restored by thioredoxin reductase activity.65 When 
oxidant production frees ASK1 from its interaction with 
thioredoxin, ASK1 is susceptible to activation by signal-
ling complexes formed after activation of toll receptor 4 
(TLR4) or TNFα.63 These complexes contain TRAF6 and 
TRAF2, respectively, which can bind with free ASK1 in 
such a way as to promote its homodimerisation, thereby 
unleashing its kinase activity.63 66 Activation of TLR4—via 
binding to a saturated fatty acid/fetuin A complex67—
as well as TNFα-mediated activation of its receptor on 
adipocytes, are prominent mechanisms for induction of 
insulin resistance in hypertrophied adipocytes.68 Activa-
tion of these receptors also boosts oxidant production, a 
prerequisite for their activation of ASK1.63 69 Suppression 
of this oxidant production, as by bilirubin or bilirubin 
mimesis, can therefore be expected to blunt activation of 
the ASK1-MEK4-JNK signalling pathway that is a crucial 
mediator of insulin resistance syndrome.

Consistent with this prediction, adipocyte-specific 
overexpression of HO-1, systemic induction HO-1, and 
oral administration of phycocyanin or whole spirulina 
have all been shown to promote proper adipocyte func-
tion and mitigate induction of metabolic syndrome in 
rodents fed high-fat or fructose-rich diets.70–75 Addition-
ally, treatment with the broad-spectrum NADPH oxidase 

inhibitor apocynin attenuated development of metabolic 
syndrome in KKAy diabetes-prone mice. Oral administra-
tion of phycocyanin has a similar impact in these mice.76 
The favourable impact of high-dose spirulina on insulin 
sensitivity in treated patients with HIV has been noted.77

bilirUbin direCtly proteCts tissUes targeted by 
metaboliC syndrome
Optimal adipocyte function helps to prevent hepatic 
steatosis by moderating free fatty acid flux to the liver 
when insulin is elevated and also by enabling appro-
priate adiponectin production. It is therefore notable 
that dietary spirulina has been found to decrease liver 
fat content and mitigate liver inflammation in rodent 
models of metabolic syndrome.78–80 Moreover, two 
open clinical trials in which spirulina was administered 
orally in centrally obese patients with non-alcoholic 
fatty liver disease have reported improved liver function 
(decreased serum hepatic enzymes and/or decrease liver 
fat as assessed by sonography).81 82 In one of these trials, 
the patients ingested 6 g spirulina daily for 6 months; 
at the end of the study, liver enzymes had dropped by 
about a third, serum lipid profile had improved (lower 
triglycerides and LDL-C, higher HDL-C), insulin resist-
ance assessed by HOMA had dropped by 20% and BMI 
had dropped by 8%—changes that were all highly signif-
icant.82 Since the patients had not been asked to modify 
their diets or exercise habits, the observed weight loss 
conceivably could be attributable to an improvement in 
hypothalamic inflammation. Suppression of oxidant and 
cytokine production by infiltrating macrophages and 
Kupffer cells might also contribute to the improvement 
in liver function seen during spirulina administration, 
as activation of NADPH oxidase in these cells promotes 
the oxidant stress and inflammation that collaborates 
with lipid overload in induction of steatohepatitis.83–85 
Moreover, activation of NADPH oxidase in stellate cells 
is a driver of the liver fibrosis that leads to end-stage 
cirrhosis.86

Metabolic syndrome also impairs vascular endothelial 
function—a likely reason why this syndrome collaborates 
with elevated low-density lipoprotein to promote athero-
genesis and vascular events.87–89 Increased exposure to 
free fatty acids and proinflammatory cytokines, as well 
as decreased adiponectin levels, may play a role in medi-
ating this endothelial dysfunction. Increased vascular 
expression and activity of NADPH oxidase is a feature 
of metabolic syndrome and a mediator of the associated 
endothelial dysfunction.90–93 Ingestion of spirulina or 
phycocyanin has been found to exert anti-atherosclerotic 
effects in rodent models.94–97

Prospective epidemiology links higher plasma bili-
rubin with lower risk for myocardial infarction, stroke, 
left ventricular hypertrophy (LVH) and heart failure, 
all of which are more common in those with metabolic 
syndrome.98–101 Superior endothelial function may 
underlie much of this apparent protection, whereas 
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diminished platelet aggregability may contribute to lower 
risk for vascular events, and better cardiac nitric oxide 
bioactivity stemming from control of NADPH oxidase-me-
diated oxidative stress may play a role in the diminished 
risk for LVH and heart failure associated with increased 
bilirubin.102–107

bilirUbin aids prevention of type 2 diabetes and of 
diabetiC CompliCations
In pancreatic beta cells of patients with metabolic 
syndrome, an increase in Nox2-dependent oxidant 
production induced by joint overexposure to free fatty 
acids and glucose (glucolipotoxicity) can lead to a failure 
of glucose-stimulated insulin release and an upregulation 
of apoptosis that ushers in type 2 diabetes—which in turn 
sustains and exacerbates the glucolipotoxicity mediating 
beta-cell failure.108–112 This phenomenon may contribute 
to the inverse correlation of serum bilirubin with risk for 
type 2 diabetes. Indeed, oral biliverdin postpones onset 
of diabetes in db/db mice.113 Moreover, hyperglycae-
mia-induced NADPH oxidase activation is a mediator of 
the microvascular complications of diabetes; in diabetics, 
serum bilirubin correlates inversely with risk for diabetic 
nephropathy, retinopathy and neuropathy.114–118 Most 
strikingly, when diabetics with documented GS were 
matched with other diabetics, not known to have GS, 
with respect to age, sex, duration of diabetes and severity 
of hyperglycaemia, those with GS were found to be less 
than a third as likely to develop nephropathy, retinopathy 
or coronary disease.119 Moreover, oral administration of 
biliverdin or of phycocyanin has been shown to prevent 
glomerulosclerosis in db/db mice.18 21

Hence, bilirubin or bilirubin mimesis may be bene-
ficial with respect to the hypothalamic inflammation 
that promotes inappropriate weight gain, the adipo-
cyte dysfunction that leads to metabolic syndrome once 
obesity has emerged, the hepatic and vascular pathology 
that often accompanies metabolic syndrome, the glucoli-
potoxicity-induced beta-cell dysfunction that can precip-
itate onset of type 2 diabetes in patients with metabolic 
syndrome, and the microvascular and macrovascular 
complications of diabetes. Moderate and safe downregu-
lation of NADPH oxidase activity may thus have profound 
implications for preservation of metabolic and vascular 
health.
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